Astrid Hackenberg

Sr. Program Manager
Technical Evangelism &
Development- EMEA

B Microsoft

introducing Orleans and the Actor model

Problem:concurrency is hard*

Distribution, high throughput and low-latency make it even harder

*Correctness, performance and robustness are difficult to achieve in the face of concurrency

"Traditional’ approach — 3 tier architecture

Frontends
|\/||dd|e Tier 3 tier architecture moves concurrency
T

=l Storage problems to the database

A Statelesdrontends
A Stateless middle tier

A Storage is thechallenge and can become a

bottleneck

ey |

A latency, throughput, scalability,

partitioning

The Actor Model

Mathematical theory of computation
Introduced in 1973 by Hewitt, Bishop, and Steiger, influenced by Lisp, Simula and Smalltalk
Popularised by Joe Armstrong with Erlang in 1986, Erlang is behind CouchDB, Riak, RabbitMQ

A framework and basis for reasoning about concurrency, with Actors as primitives of
concurrent computation

An Actor needs 3 things:

- Processing : logic / behaviour

- Storage : maintain internal state (mutable)

- Communication : send messages to other actors

Actor model as stateful middle tier

Frontends Actor middle

-»
3

Storag A Performance of cache

A Rich semantics

A Concurrency control

)
Wy ([

A Horizontal calls are natural

A OOP paradigmregained

3

Virtual Actors in “Orleans”: Grains

'——-~
P emmme NG ‘ ‘
,/,f N\ ~
‘7 AN
’
1) oo

Game Grain (Instance) #2,548,308 Game Grain #2,548,308

Activation #1 @ 192.168.1.1
1
\“\ -’ O ,"Il
\\:\ P

Game Grain Type

00° m

Game Grain (Instance) #2,031,769

Game Grain #2,031,769
Activation #1 @ 192.168.1.5
Grain Type

Grain (Instance) Grain Activation

Project "Orleans”

Distributed Actor runtime

« Virtual Actor model
+ Location transparency

Built for .NET

« Actors (Grains) are .NET objects

« Messaging through .NET interfaces

« Asynchronous through async/await in C#
« Automatic error propagation

Silo runtime execution container

« Implicit activation & lifecycle management
« Coordinated placement

« Multiplexed communication

« Failure recovery

New Silo

B Microsoft

Developing with Orleans

Grain interfaces

Marker interface to indicate
grain interfaces

public interface IDevice : IGrain

{

Task<string > MyStatus (Iint temperature);

All grain interface methods must
be asynchronous

Implementing the grain type

Base class for all basic grain
plumbing functionality

public class DeviceGrain : GrainBase, IDevice
{
Task<string > MyStatus (int temperature)
{
var resp = "lam:" + (temperature>25 ? "sick" : "good")
return Task.FromResult (resp);
}

Talking to grains

Factory Class is autegenerated
at compile time

private async static Task SendMessag¢ long grainid)

Grain Id (long , GUID or
{ String)

IDevice thing = DeviceFactory .GetGrain (grainid);
string response = await thing.MyStatus (30);
Console .WriteLine ("Response: {0}" , response),

the magic of IGrain

orleans.codegen.cs

[ﬁ] HelloWerldinterfaces.dll

{3 HelloWerldinterfaces

% HelloFactory

=3 [Hello e @ GetGrain
oMethodlnvoker

@ HelloMethodinvoker o GetGrain
@ GetMethodiName o Cast = o GetGrain
.
& AsDictionary & Interfaceld @ GetGrain

@ HelloProperties & HelloFactory

Sample- Hello World on Azure

[®P HelloWordGrains.dll

Orleans.Azure.Silos.WorkerRole.dll Orleans.Azure.Samples.WebRole.dll

- :) HelloWorldinterfaces.dll
{3 Orleans.Azure Silos {} Orleans.Azure.Samples.Web O

Orleans on Azure

Orleans

_--7| Worker Role
messages. y.y
Pad 1
tad i
P 1
2 1
1
1
i
---------> Web Role [¢-- Silo discovery--t
i
1
< 1
S 1
Sso 1
= i
messages A4

AN Orleans
Worker Role

Persistent Grain
Storage

- ————————————————————— - - -

register Silo / status

Orleans Silo
Instance table

register Silo / status

-
’f

Grains
» single activation (default)

- only one instance of every grain,

e stateless worker

« more then 1 instance can exist (per Silo)
« no state reconciliation between instances
- typically grains without local state or with static state

* grain reference

- proxy object that implements the corresponding grain interface
* can be passed as argument to a method call

« used for communication between client code and hosted grain (Orleans Client
library)

Grain persistence
Orleans system managed persistence framework

Inherit Orleans.GrainBase<T>
<T> must be a type that implements |GrainState

[Storage] attribute specifies storage provider

provider is defined in the silo config file

Different grain types can use the same storage provider

Different grain types can use different configured storage providers, even if both are the same type

Grain state is automatically READ on grain activation
WRITE must be triggered explicitly for any changed grain state

Sample- Twitter Monitor

l‘.'lJJ TwitterGrains.dll

43 TwitterGrains

CB CounterGrainState
&3 |CounterState -
5 TwitterGraininterfaces.dll

C@ HashtagGrainstate
[.11 TwitterWebApplication.dll

ITl:ttalrbtate

B Microsoft

use cases for Orleans

Sample solutions

Adventure

A

ALocal client app using local Silo

AGrainrelationship and
dependency

GPSTracker

Alnternet of Things

AWeb role with
- SignalR OWIN for messages
- Orleans Silo

APushNotifier is StatelessWorker

StorageProviders

AGrain persistency

AProvider implementation for JSON
file storage and MongoDB storage

AzureWebSample

AOrleans in Azure
ARunning Silosin worker roles

HelloWorld
A
AUsage of IGrainand GrainBase

Astart/stop Silo from code and run
Silo in separate AppDomain

TicTacToe

A

ATypical game grains game & player
ASingleton Pairing grain using cache
AUpdate screen with WindowsTimer

Chirper

A

APublish / SubscriberQrleans
Observern model

AMultiple Interface implementation
AGrain pre-initialization

Presence
A

ATypical game grains game & player
AMulti -cast messages (player
notification)

AStatelesspresencegrain (true
Stateless worker)

TwitterSentiment
A

AcComplete solution

ADispatcher handles multiple grain
updates from client (hashtags)

A Advanced implementation; count
total, string grain id (hashtag)

[Near] real-time analytics

 Devices send telemetry to the
Cloud

» Per-device actors process and
pre-aggregate incoming data

« Multi-level aggregation by actors

- Statistics, predictive analytics, fraud
detection, etc.

« Control channel back to devices
« Grouping by location, category, etc.
» Elastically scales with # of devices

Intelligent cache

« Actors hold cache values

: . A
 Semantic operation on values

« Function shipping (method calls)

« Coordination across multiple values
« Automatic LRU eviction

» Transparent on-demand reactivation

« Write-through cache with
optional batching

