
Indexing and searching NuGet.org
with Azure Functions and Search
Maarten Balliauw
@maartenballiauw

“Find this type on NuGet.org”

“Find this type on NuGet.org”

In ReSharper and Rider

Search for namespaces
& types that are not yet referenced

“Find this type on NuGet.org”

Idea in 2013, introduced in ReSharper 9
(2015 - https://www.jetbrains.com/resharper/whatsnew/whatsnew_9.html)

Consists of

ReSharper functionality

A service that indexes packages and powers search
Azure Cloud Service (Web and Worker role)

Indexer uses NuGet OData feed

https://www.nuget.org/api/v2/Packages?$select=Id,Version,NormalizedVersion,LastEdited,Published&$
orderby=LastEdited%20desc&$filter=LastEdited%20gt%20datetime%272012-01-01%27

https://www.jetbrains.com/resharper/whatsnew/whatsnew_9.html
https://www.nuget.org/api/v2/Packages?$select=Id,Version,NormalizedVersion,LastEdited,Published&$orderby=LastEdited%20desc&$filter=LastEdited%20gt%20datetime%272012-01-01%27

NuGet over time...

https://twitter.com/controlflow/status/1067724815958777856

https://twitter.com/controlflow/status/1067724815958777856

NuGet over time...

Repo-signing announced August 10, 2018

Big chunk of packages signed
over holidays 2018/2019

Re-download all metadata & binaries

Very slow over OData

https://blog.nuget.org/20180810/Introducing-Repository-Signatures.html

https://blog.nuget.org/20180810/Introducing-Repository-Signatures.html

NuGet over time...

OData API being deprecated!

https://github.com/NuGet/Announcements/issues/37

https://github.com/NuGet/Announcements/issues/37

NuGet server-side API

NuGet talks to a repository

Can be on disk/network share or remote over HTTP(S)

HTTP(S) API’s

V2 – OData based (used by pretty much all NuGet servers out there)

V3 – JSON based (NuGet.org, TeamCity, MyGet, Azure DevOps, GitHub repos)

V3 Protocol

JSON based

A “resource provider” of various endpoints per purpose

Catalog (NuGet.org only) – append-only event log

Registrations – materialization of newest state of a package

Flat container – .NET Core package restore (and VS autocompletion)

Report abuse URL template

Statistics

…

https://api.nuget.org/v3/index.json (code in https://github.com/NuGet/NuGet.Services.Metadata)

https://api.nuget.org/v3/index.json
https://github.com/NuGet/NuGet.Services.Metadata

How does NuGet.org work?

User uploads to NuGet.org

Data added to database

Data added to catalog (append-only data stream)

Various jobs can run over catalog using a cursor
Registrations (last state of a package/version), reference catalog entry

Flatcontainer (fast restores)

Search index (search, autocomplete, NuGet Gallery search)

…

Catalog seems interesting!

Append-only stream of mutations on NuGet.org

Updates (add/update) and Deletes

Chronological

Can continue where left off (uses a timestamp cursor)

Can restore NuGet.org to a given point in time

Structure

Root https://api.nuget.org/v3/catalog0/index.json

+ Page https://api.nuget.org/v3/catalog0/page0.json

+ Leaf https://api.nuget.org/v3/catalog0/data/2015.02.01.06.22.45/adam.jsgenerator.1.1.0.json

https://api.nuget.org/v3/catalog0/index.json
https://api.nuget.org/v3/catalog0/page0.json
https://api.nuget.org/v3/catalog0/data/2015.02.01.06.22.45/adam.jsgenerator.1.1.0.json

NuGet.org catalog
demo

“Find this type on NuGet.org”

Refactor from using OData to using V3?

Mostly done, one thing missing: download counts (using search now)
https://github.com/NuGet/NuGetGallery/issues/3532

Build a new version?

Welcome to this talk ☺

https://github.com/NuGet/NuGetGallery/issues/3532

Building a new version

What do we need?

Watch the NuGet.org catalog for package changes

For every package change

Scan all assemblies

Store relation between package id+version and namespace+type

API compatible with all ReSharper and Rider versions

What do we need?

Watch the NuGet.org catalog for package changes periodic check

For every package change based on a queue

Scan all assemblies

Store relation between package id+version and namespace+type

API compatible with all ReSharper and Rider versions always up, flexible scale

Sounds like functions!

NuGet.org catalog Watch catalog

Index command

Find type API

Find namespace API

Search index

Index package

Raw .nupkg

Index as JSON

Download packageDownload command

Collecting from catalog
demo

Functions best practices

@PaulDJohnston https://medium.com/@PaulDJohnston/serverless-best-practices-b3c97d551535

Each function should do only one thing

Easier error handling & scaling

Learn to use messages and queues

Asynchronous means of communicating, helps scale and avoid direct coupling

...

https://twitter.com/pauldjohnston
https://medium.com/@PaulDJohnston/serverless-best-practices-b3c97d551535

Bindings

Help a function do only one thing
Trigger, provide input/output

Function code bridges those

Build your own!*
SQL Server binding

Dropbox binding

...

NuGet Catalog

*Custom triggers not officially supported (yet?)

Trigger Input Output

Timer ✔

HTTP ✔ ✔

Blob ✔ ✔ ✔

Queue ✔ ✔

Table ✔ ✔

Service Bus ✔ ✔

EventHub ✔ ✔

EventGrid ✔

CosmosDB ✔ ✔ ✔

IoT Hub ✔

SendGrid, Twilio ✔

... ✔

Creating a trigger
binding
demo

We’re making progress!

NuGet.org catalog Watch catalog

Index command

Find type API

Find namespace API

Search index

Index package

Raw .nupkg

Index as JSON

Download packageDownload command

Downloading packages
demo

Next up: indexing

NuGet.org catalog Watch catalog

Index command

Find type API

Find namespace API

Search index

Index package

Raw .nupkg

Index as JSON

Download packageDownload command

Indexing

Opening up the .nupkg and reflecting on assemblies

System.Reflection.Metadata

Does not load the assembly being reflected into application process

Provides access to Portable Executable (PE) metadata in assembly

Store relation between package id+version and namespace+type

Azure Search? A database? Redis? Other?

System.Reflection.Metadata
Free decompiler

www.jetbrains.com/dotpeek

http://www.jetbrains.com/dotpeek

System.Reflection.Metadata
using (var portableExecutableReader = new PEReader(assemblySeekableStream))
{

var metadataReader = portableExecutableReader.GetMetadataReader();
foreach (var typeDefinition in metadataReader.TypeDefinitions.Select(metadataReader

.GetTypeDefinition))
{

if (!typeDefinition.Attributes.HasFlag(TypeAttributes.Public)) continue;

var typeNamespace = metadataReader.GetString(typeDefinition.Namespace);
var typeName = metadataReader.GetString(typeDefinition.Name);

if (typeName.StartsWith("<") || typeName.StartsWith("__Static") ||
typeName.Contains("c__DisplayClass")) continue;

typeNames.Add($"{typeNamespace}.{typeName}");
}

}

Azure Search

“Search-as-a-Service”

Define an index that will hold documents consisting of fields

Fields can be searchable, facetable, filterable, sortable, retrievable

Structure can’t be changed easily

Think what we want to search, and what we want to display

Indexing packages
demo

“Do one thing well”

Our function shouldn’t care about creating a search index.

Better: return index operations, have something else handle those

Custom output binding?

Indexing packages
(better version)
demo

Almost there…

NuGet.org catalog Watch catalog

Index command

Find type API

Find namespace API

Search index

Index package

Raw .nupkg

Index as JSON

Download packageDownload command

HTTP trigger binding

[HttpTrigger(AuthorizationLevel.Anonymous,
"get", Route = "v1/find-type")] HttpRequest request

Options for trigger

Authentication (anonymous, a function/host key, a user token)

HTTP method

What the route looks like

Making search work
with ReSharper and Rider
demo

One issue left...

Download counts - used for sorting and scoring search results

Change continuously on NuGet

Not part of V3 catalog

Could use search but that’s N(packages) queries

https://github.com/NuGet/NuGetGallery/issues/3532

If that data existed, how to update search?

Merge data! new PackageDocumentDownloads(key, downloadcount)

https://github.com/NuGet/NuGetGallery/issues/3532

We’re done!

NuGet.org catalog Watch catalog

Index command

Find type API

Find namespace API

Search index

Index package

Raw .nupkg

Index as JSON

Download packageDownload command

We’re done!

Functions
Collect changes from NuGet catalog

Download binaries

Index binaries using PE Header

Make search index available in API

Trigger, input and output bindings
Each function should do only one thing

NuGet.org catalog Watch catalog

Index command

Find type API

Find namespace API

Search index

Index package

Raw .nupkg

Index as JSON

Download packageDownload command

We’re done!

All our functions can scale (and fail)
independently

Full index in May 2019 took ~12h on 2 B1 instances

~ 1.7mio packages (NuGet.org homepage says)

~ 2.1mio packages (the catalog says ☺)

~ 8 400 catalog pages

with ~ 4 200 000 catalog leaves
(hint: repo signing)

January 2020: ~ 2.6 mio packages / 3.5 TB
NuGet.org catalog Watch catalog

Index command

Find type API

Find namespace API

Search index

Index package

Raw .nupkg

Index as JSON

Download packageDownload command

Closing thoughts…

Would deploy in separate function apps for cost

Trigger binding collects all the time so needs dedicated capacity (and thus, cost)

Others can scale within bounds/consumption (think of $$$)

Would deploy in separate function apps for failure boundaries

Trigger, indexing, downloading should not affect health of API

Are bindings portable...?

Avoid them if (framework) lock-in matters to you

They are nice in terms of programming model…

Thank you!
https://blog.maartenballiauw.be

@maartenballiauw

