AZURE USER GROUP NL

i
Z
)
>
<
=
///

“Find this type on NuGet.org”

14
0

var person = JsonConvert.DeserializeObject<Person>(jsonData);

In ReSharper and Rider

Create type "JsonConvert’

Create nested type 'JsonConvert'

Search for namespaces
& types that are not yet referenced

Create property 'JsonConvert'

Create read-only property 'JsonConvert'
Create static class 'JsonConvert'

Create other 4
Change all 'JsonConvert'

Change all local 'JsonConvert'

5 @ D QDD DDA o

Find this type on nuget.org...

“Find this type on NuGet.org”

ldea in 2013, introduced in ReSharper 9

(2015 - https://www.jetbrains.com/resharper/whatsnew/whatsnew 9.html)

Consists of
ReSharper functionality
A service that indexes packages and powers search

Azure Cloud Service (Web and Worker role)

Indexer uses NuGet OData feed
https://www.nuget.org/api/v2/Packages?$select=Id,Version,NormalizedVersion,LastEdited,Published&$

orderby=| astEdited%20desc&$filter=L astEdited%20qt%20datetime%272012-01-01%27

https://www.jetbrains.com/resharper/whatsnew/whatsnew_9.html
https://www.nuget.org/api/v2/Packages?$select=Id,Version,NormalizedVersion,LastEdited,Published&$orderby=LastEdited%20desc&$filter=LastEdited%20gt%20datetime%272012-01-01%27

NuGet over time...

‘-;-’ Alexander Shvedov
¥

*[’ @controlflow

huh, nuget.org repo is 1.9Tb now... was like
250Gb in a year 2015

& Tweet vertalen

Nuget.org (E:)

W™ 844 GB free of 2.72 TB

11:20 - 28 nov. 2018

6 retweets 22 likes .%“e z 3%@&

Q a 0 6 QO 22 ™
https://twitter.com/controlflow/status/1067724815958777856

https://twitter.com/controlflow/status/1067724815958777856

NuGet over time...

Repo-signing announced August 10, 2018

Big chunk of packages signed
over holidays 2018/2019

Re-download all metadata & binaries
Very slow over OData

NuGet.org starts repo-signing packages

August 10, 2018 by Ricardo Minguez (Rido)

In May, we implemented Stage 1 and enabled support for any NuGet.org user to submit signed packages to NuGet.org. Today, we are announcing Stage 2 of our
NuGet package signing journey - tamper proofing the entire package dependency graph.

What is a Repository Signature?

A repository signature is a code signing signature produced with an X.509 certificate. This signature is uniquely associated with a repository using custom
metadata,

Benefits of repository signatures
NuGet.org has started to repository sign new package submissions. Author signed packages will be countersigned by NuGet.org repository signature. This will

provide package integrity guarantee for packages published to NuGet.org. NuGet clients will ensure that the package contents have not been modified from the
time a package was uploaded to NuGet.org to when a developer downloads it for use in their projects.

Changes in your packages

If you are a package author, you will notice the packages you submitted to NuGet.org have been modified to include a repository signature. This will add a few
kilobytes to your package. If the package submitted was unsigned you will notice, there is a new file in the package root called .signature.p7s . If your package
was author signed, NuGet.org will add a countersignature in the existing signature file. No other changes are made to package contents.

Rollout plan

Starting today, all new package submissions to NuGet.org will be repository signed. We also plan to repository sign all existing packages on NuGet.org.

https://blog.nuget.org/20180810/Introducing-Repository-Signatures.html

https://blog.nuget.org/20180810/Introducing-Repository-Signatures.html

NuGet over time

OData APl being deprecated!

Pull requests Issues Marketplace Explore

] NuGet / Announcements

Code (@ lssues 37 Pull requests 0 Projects 0 Security Insights

@ Unwatch v

192 K Star | 38 YFork 3

Using OData to query NuGet.org repository is being deprecated #37

anangaur opened this issue 26 days ago - 0 comments

=

anangaur commented 26 days ago + edited = Member

We introduced v3 apIs in early 2016. We have made continuous investments to make it more reliable,
perfarmant and secure. Going forward, we plan to bring all new features and improvements only to the
newer v3 APIs . As part of this strategy, we are deprecating the usage of obata queries. Subsequently,
we plan to disable the opata queries starting Feb 5th, 2020.

Call to Action: Transition to V3 APIs
Here are some resources to help you with the migration:

® NuGet Server v3 ApPIs reference
* Guide to transition from NuGet v2 API to v3 API.

¢ Blog post: Switching from WCF OData to Web API

If you need further help in moving your use case to v3 APIs , do reach out to us at support@nuget.org
or by commenting on the discussion issue: NuGet/NuGetGallery#7423

Note:
This does not impact the official legacy clients (nuget.exe 2.x or Visual Studio 2013) that rely on the V2
endpoints (https://www.nuget.org/apifv2)

(S ‘ anangaur added [t Rd BN labels 26 days ago

@ ‘ anangaur locked and limited conversation to collaborators 26 days ago

https://github.com/NuGet/Announcements/issues/37

Assignees

No one assigned

Labels

Breaking Change

Projects

None yet

Milestone

No milestone

Notifications Customize

«* Unsubscribe

You're receiving notifications because

you're watching this repository.

1 participant

(Y

https://github.com/NuGet/Announcements/issues/37

NuGet talks to a repository

Can be on disk/network share or remote over HTTP(S)

HTTP(S) API's
V2 — OData based (used by pretty much all NuGet servers out there)
V3 = JSON based (NuGet.org, TeamCity, MyGet, Azure DevOps, GitHub repos)

V3 Protocol

JSON based

A “resource provider” of various endpoints per purpose
Catalog (NuGet.org only) — append-only event log
Registrations — materialization of newest state of a package
Flat container — .NET Core package restore (and VS autocompletion)
Report abuse URL template
Statistics

https:.//api.nuget.org/v3/index json (code in https://github.com/NuGet/NuGet Services Metadata)

https://api.nuget.org/v3/index.json
https://github.com/NuGet/NuGet.Services.Metadata

How does NuGet.org work?

User uploads to NuGet.org
Data added to database
Data added to catalog (append-only data stream)

Various jobs can run over catalog using a cursor
Registrations (last state of a package/version), reference catalog entry
Flatcontainer (fast restores)

Search index (search, autocomplete, NuGet Gallery search)

Catalog seems interesting!

Append-only stream of mutations on NuGet.org
Updates (add/update) and Deletes

Chronological
Can continue where left off (uses a timestamp cursor)
Can restore NuGet.org to a given point in time

Structure

Root https://api.nuget.org/v3/catalog0/index.json

+ Pa g € https://api.nuget.org/v3/catalog0/page0.json

+ Leaf https://api.nuget.org/v3/catalog0/data/2015.02.01.06.22.45/adam.jsgenerator.1.1.0.json

https://api.nuget.org/v3/catalog0/index.json
https://api.nuget.org/v3/catalog0/page0.json
https://api.nuget.org/v3/catalog0/data/2015.02.01.06.22.45/adam.jsgenerator.1.1.0.json

NuGet.org catalog

“Find this type on NuGet.org”

Refactor from using OData to using V37

Mostly done, one thing missing: download counts (using search now)
https://github.com/NuGet/NuGetGallery/issues/3532

Build a new version?
Welcome to this talk ©

https://github.com/NuGet/NuGetGallery/issues/3532

What do we need?

Watch the NuGet.org catalog for package changes

For every package change
Scan all assemblies
Store relation between package id+version and namespace+type

APl compatible with all ReSharper and Rider versions

What do we need?

Watch the NuGet.org catalog for package changes periodic check

For every package change based on a queue
Scan all assemblies
Store relation between package id+version and namespace+type

APl compatible with all ReSharper and Rider versions always up, flexible scale

Sounds like functions!

]

[

Index command

NuGet.org catalog

Watch catalog

Index package

Search index

Index as JSON

=
Bl

Download command

<F>

Download package

Raw .nupkg

S
5

Find type API

A=

Find namespace API

Collecting from catalog

demo

Functions best practices

@PaulDJohnston https://medium.com/@PaulDJohnston/serverless-best-practices-b3¢97d551535

Fach function should do only one thing
Fasier error handling & scaling

Learn to use messages and queues
Asynchronous means of communicating, helps scale and avoid direct coupling

https://twitter.com/pauldjohnston
https://medium.com/@PaulDJohnston/serverless-best-practices-b3c97d551535

Bindings

N LT T Help a function do only one thing
v

Timer Trigger, provide input/output

nire v v Function code bridges those

Blob v v v .

Queue v 7 Build your ovyn!f

Table v v SQL Serverf bmdmg

Service Bus v v Dropbox binding

EventHub v v

EventGrid v NuGet Catalog

CosmosDB v v v *Custom triggers not officially supported (yet?)
loT Hub v

SendGrid, Twilio

<L

Creating a trigger
binding

We're making progress!
D
S

Find type API

D

Search index ‘s

Index command Index package

Find namespace API

Index as JSON

= —O—Ee

Download command Download package Raw .nupkg

® <

NuGet.org catalog Watch catalog

Downloading packages

demo

Next up: Indexing
QR
S

Find type API

A=

Search index ts

[]

Index command Index package

Find namespace API

Index as JSON

NuGet.org catalog Watch catalog

e A
==

Download command Download package Raw .nupkg

Indexing

Opening up the .nupkg and reflecting on assemblies
System.Reflection.Metadata
Does not load the assembly being reflected into application process
Provides access to Portable Executable (PE) metadata in assembly

Store relation between package id+version and namespace+type
Azure Search? A database? Redis? Other?

System.Reflection.Metadata

Free decompiler
www.jetbrains.com/dotpeek

Assembly Explorer
FPRANEE & A LD

Type to search

4 [YouTrackSharp (2019.1.0)
> & Dependencies

4 0 YouTrackSharp (2019.1.0.0, msil, .NETStandard v2.0)
4 % Metadata
> Bl Headers
> B #Strings (946)

v v
€] €
H#H FH
=)
o C
D_ g/
gf—

&% 07 TypeRef (124): ResolutionScg - ResolutionScope | TypeName - string | TypeNamespace - string
4 *33 02 TypeDef (121)fFlags - 4b | TypeM

P &9 Name: string 00002397 BeargrpkenConnection
P &9 Namespace: string 0000259AYouTrackSharp

http://www.jetbrains.com/dotpeek

System.Reflection.Metadata

using (var portableExecutableReader = new PEReader(assemblySeekableStream))

{

var metadataReader = portableExecutableReader.GetMetadataReader();
foreach (var typeDefinition in metadataReader {TypeDefinitions|Select(metadataReader

.GetTypeDefinition))

{
if (!typeDefinition.Attributes.HasFlag&?YEEK{tPibJEEETRQQ}iC)) continue;
var typeNamespace = metadataReader.GetString{typeDefinition.Namespace);
var typeName = metadataReader.GetStringItypeDefinition.NameD;
if (typeName.StartsWith("<") || typeName.StartsWith(" Static") ||

typeName.Contains("c_ DisplayClass")) continue;

typeNames.Add($"{typeNamespace}.{typeName}");

}

Azure Search

"Search-as-a-Service”

Define an index that will hold documents consisting of fields
Fields can be searchable, facetable, filterable, sortable, retrievable

Structure can't be changed easily
Think what we want to search, and what we want to display

Indexing packages

demo

“Do one thing well”

Our function shouldn't care about creating a search index.
Better: return index operations, have something else handle those
Custom output binding?

Indexing packages
(better version)

demo

Almost there...

S
N

Find type API

Search index

[]

=

Index command Index package

Find namespace API
Index as JSON

NuGet.org catalog Watch catalog

e A
==

Download command Download package Raw .nupkg

HTTP trigger binding

[HttpTrigger (AuthorizationLevel.Anonymous,
"get", Route = "v1/find-type")] HttpRequest request

Options for trigger
Authentication (anonymous, a function/host key, a user token)
HTTP method
What the route looks like

Making search work
with ReSharper and Rider

demo

One issue left...

Download counts - used for sorting and scoring search results
Change continuously on NuGet
Not part of V3 catalog
Could use search but that's N(packages) queries
https://github.com/NuGet/NuGetGallery/issues/3532

It that data existed, how to update search?
Merge data! new PackageDocumentDownloads(key, downloadcount)

https://github.com/NuGet/NuGetGallery/issues/3532

e vwaer AW |

s e Y]
/1 o0

Find type API

A

Search index

Index package

Find namespace API

Index as JSON

Raw .nupkg

Download package

©
c
©
£
S
o
°
@© .,
P
The
3
O
(=)

We're done!

Functions
Collect changes from NuGet catalog
Download binaries
Index binaries using PE Header
Make search index available in API

Trigger, input and output bindings
Fach function should do only one thing

(o

5
Find type API

(&

Search index \
[-
<

[—
o m—(
| =

Index command Index package

—

NuGet.org catalog Watch catalog

Index as JSON

= =—<D—Eg

Download command Download package Raw .nupkg

Find namespace API

We're done!

All our functions can scale (and fail)
independently

Full index in May 2019 took ~12h on 2 BT instances
~ 1.7mio packages (NuGet.org homepage says)
~ 2.1mio packages (the catalog says ©)

&
~ 8 400 catalog pages p<d <>
with ~ 4 200 000 catalog leaves i | s
(hint: repo signing) g5 e ‘ﬁ%

January 2020: ~ 2.6 mio packages/ 3.5 TB @ ”

NuGet.org catalog Watch catalog

Index as JSON

= =—<D—Eg

Download command Download package Raw .nupkg

Find namespace API

Closing thoughts...

Would deploy in separate function apps for cost
Trigger binding collects all the time so needs dedicated capacity (and thus, cost)
Others can scale within bounds/consumption (think of $$%)

Would deploy in separate function apps for failure boundaries
Trigger, indexing, downloading should not affect health of AP

Are bindings portable...?
Avoid them if (framework) lock-in matters to you
They are nice in terms of programming model...

